Tutorial DNS Hyperlocal
Introdução
A Zona Raiz do Sistema de Nomes de Domínios (DNS) é servida por 12 organizações que operam instâncias anycast de servidores de nomes autoritativos provendo respostas para a raiz do DNS. Estas instâncias estão distribuídas em mais de 1000 localidades ao redor do mundo. Apesar deste grande número de servidores e alta capacidade provisionada para a resolução da raiz de nomes, ainda existe a possibilidade de que um grande ataque coordenado de negação de serviço (DDoS) possa comprometer o acesso à internet para muitos usuários.
Para minimizar e prevenir esta ameaça, existe a possibilidade de adicionar um fator de resiliência na configuração dos servidores recursivos do provedor de internet através do uso de uma cópia local da zona raiz, chamada de Hyperlocal. Hyperlocal é apresentado em detalhes na RFC 7706 e, resumidamente, consiste em executar uma cópia da zona raiz no mesmo servidor de serviços de resolução recursiva. Desta forma, as consultas à zona raiz dos clientes são respondidas localmente sem necessidade comunicação externa entre os servidores. Isso resulta em maior robustez do serviço em caso de ataques e ganhos na velocidade de provimento de respostas às consultas ao DNS dos usuários.
Este tutorial foi criado para compartilhar a prática de implementação de um sistema Hyperlocal para a configuração de servidores de DNS do tipo BIND9 e Unbound. Outras configurações e softwares mencionados na RFC 7706 não são abordados neste tutorial.
Implementação - CentOS
Requisitos para instalação do Hyperlocal:
- Instalação básica CentOS Linux 7
- 1vCPU
- 1GB de RAM
- 20GB de Disco
Baixe o ISO do Sistema Operacional no link http://isoredirect.centos.org/centos/7/isos/x86_64/
Sistema operacional instalado e atualizado, agora devemos instalar o Bind9 com o comando “yum install bind bind-utils”. A configuração para o funcionamento da zona raiz é bem simples como podemos ver abaixo. Os arquivos de configuração do Bind no Centos7 por padrão estão no arquivo /etc/named.conf. O servidor foi configurado com o IP 198.51.100.1 em sua interface. Exemplo abaixo de configuração da zona raiz: view root { # IP da interface onde chegarão às requisições
match-destinations { 198.51.100.1; };
zone "." {
type slave;
file "rootzone.db";
notify no;
masters {
192.228.79.201; # b.root-servers.net
192.33.4.12; # c.root-servers.net
192.5.5.241; # f.root-servers.net
192.0.47.132; # xfr.cjr.dns.icann.org
2001:500:84::b; # b.root-servers.net
2001:500:2f::f; # f.root-servers.net
2001:7fd::1; # k.root-servers.net
2620:0:2830:202::132; # xfr.cjr.dns.icann.org
2620:0:2d0:202::132; # xfr.lax.dns.icann.org
};
};
};
Iniciando o serviço do Bind você pode conferir a criação da base com o comando: ls /var/named/rootzone.db” É possível melhorar de diversas formas esse exemplo de configuração do Bind, a configuração padrão do Bind com o adicional de views no exemplo seguinte já é bem funcional. options {
listen-on port 53 { any; };
listen-on-v6 port 53 { any; };
directory "/var/named";
dump-file "/var/named/data/cache_dump.db";
statistics-file "/var/named/data/named_stats.txt";
memstatistics-file "/var/named/data/named_mem_stats.txt";
recursing-file "/var/named/data/named.recursing";
secroots-file "/var/named/data/named.secroots";
dnssec-enable yes;
dnssec-validation yes;
/* Path to ISC DLV key */
bindkeys-file "/etc/named.iscdlv.key";
managed-keys-directory "/var/named/dynamic";
pid-file "/run/named/named.pid";
session-keyfile "/run/named/session.key";
};
logging {
channel default_debug {
file "data/named.run";
severity dynamic;
};
};
acl "REDE" {
127.0.0.0/8;
192.168.0.0/16;
};
view root {
# é possível fazer match por origem ou destino conforme abaixo
match-clients { 127.0.0.1; 172.16.1.1; 172.16.1.2; } ;
#match-destinations { 192.168.0.1; };
zone "." {
type slave;
file "rootzone.db";
notify no;
masters {
192.228.79.201; # b.root-servers.net
192.33.4.12; # c.root-servers.net
192.5.5.241; # f.root-servers.net
192.0.47.132; # xfr.cjr.dns.icann.org
2001:500:84::b; # b.root-servers.net
2001:500:2f::f; # f.root-servers.net
2001:7fd::1; # k.root-servers.net
2620:0:2830:202::132; # xfr.cjr.dns.icann.org
2620:0:2d0:202::132; # xfr.lax.dns.icann.org
};
};
};
view "externa" {
match-clients { any; };
recursion no;
};
view recursivos {
dnssec-validation auto;
allow-recursion { REDE; };
recursion yes;
zone "." {
type static-stub;
server-addresses { 198.51.100.1; };
};
};
Com essa configuração é possível já sentir os benefícios do Hyperlocal em sua rede, no exemplo acima, os endereços 172.16.1.1 e 172.16.1.2 são servidores recursivos externos rodando Unbound, para completar a configuração complementar do Unbound pode ser a seguinte: stub-zone: name: "."
stub-prime: no
stub-addr: 198.51.100.1
Conclusão
Em testes o desempenho é muito bom, algumas comparações a seguir consultando domínios inválidos para forçar o recursivo a procurar no root server:
// Teste 1 servidor público Google
dig @8.8.8.8 domaininvalid.com.br.xxxxxxx
;; Query time: 29 msec
// Teste 2 servidor publico Google
dig @8.8.8.8 domaininvalid.com.br.xxxxxxx
;; Query time: 27 msec
// Teste 1 no Unbound recursivo sem o Hyperlocal
dig @172.16.1.1 domaininvalid.com.br.xxxxxxx
;; Query time: 21 msec
// Teste 2 (cached) no Unbound recursivo sem o hyperlocal
dig @172.16.1.1 domaininvalid.com.br.xxxxxxx
;; Query time: 0 msec
// Teste 1 direto no Hyperlocal
dig @192.168.0.1 domaininvalid.com.br.xxxxxxx
;; Query time: 0 msec
// teste 2 (cached) direto no Hyperlocal
dig @192.168.0.1 domaininvalid.com.br.xxxxxxx
;; Query time: 0 msec
// Teste 1 no Unbound recursivo apontando para o Hyperlocal
dig @172.16.1.1 domaininvalid.com.br.xxxxxxx
;; Query time: 2 msec
// Teste 2 (cached) no Unbound recursivo apontando para o Hyperlocal
dig @172.16.1.1 domaininvalid.com.br.xxxxxxx
;; Query time: 0 msec
É portanto possível visualizar o melhor desempenho quando feitas consultas utilizando o Hyperlocal, sendo essa uma ótima implementação para manter no provedor.